Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Microbiol ; 46(2): 202-206, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37247241

RESUMO

Microbial biofilm is of paramount importance in the development of mucositis or peri-implantitis in patients with dental implants. This study was designed to investigate whether an electromagnetic field at high frequency waves directly applied on 33 titanium implants could remove experimentally-induced Enterococcus faecalis bacterial biofilm. A specially designed device (X-IMPLANT) was used to generate the electromagnetic field, with output power of 8 W, supply frequency (action/pause) 3/2s, and an output frequency of 625±5% kHz in plastic devices containing the biofilm-covered implants immersed in sterile saline. The bacterial biofilm on both treated and untreated control implants was quantitatively measured by phenol red-based Bio-Timer-Assay reagent. The kinetic analysis of the curves showed that the electrical treatment generated by the X-IMPLANT device completely removed the bacterial biofilm after 30 minutes of treatment (p<0.01). Elimination of the biofilm was also confirmed by chromatic observation in the macro-method. Our data seem to indicate that the procedure could be considered for clinical application in peri-implantitis to counteract bacterial biofilm on dental implants.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Peri-Implantite/terapia , Peri-Implantite/microbiologia , Titânio , Campos Eletromagnéticos , Cinética , Bactérias , Biofilmes
2.
Antibiotics (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203836

RESUMO

Multidrug-resistant microbial infections and the scarce availability of new antibiotics capable of eradicating them are posing a serious problem to global health security. Among the microorganisms that easily acquire resistance to antibiotics and that are the etiological cause of severe infections, there is Acinetobacter baumannii. Carbapenems are the principal agents used to treat A. baumannii infections. However, when strains develop resistance to this class of antibiotics, colistin is considered one of the last-resort drugs. However, the appearance of resistance to colistin also makes treatment of the Acinetobacter infections very difficult. Antimicrobial peptides (AMP) from the innate immunity hold promise as new alternative antibiotics due to their multiple biological properties. In this study, we characterized the activity and the membrane-perturbing mechanism of bactericidal action of a derivative of a frog-skin AMP, namely Esc(1-21), when used alone or in combination with colistin against multidrug-resistant A. baumannii clinical isolates. We found that the mixture of the two compounds had a synergistic effect in inhibiting the growth and killing of all of the tested strains. When combined at dosages below the minimal inhibitory concentration, the two drugs were also able to slow down the microbial growth and to potentiate the membrane-perturbing effect. To the best of our knowledge, this is the first report showing a synergistic effect between AMPs, i.e., Esc(1-21), and colistin against colistin-resistant A. baumannii clinical isolates, highlighting the potential clinical application of such combinational therapy.

3.
Braz J Microbiol ; 52(4): 1845-1852, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34264501

RESUMO

Candida gut colonization and yeast biofilm production capacity were investigated, by means of XTT reduction assay, in Clostridioides difficile infected (CDI) patients, in non-CDI diarrheic patients, and in healthy donors in two different time periods (2013-2015 and 2018-2019 respectively). Candida gut colonization was significantly (p < 0.001) associated to C. difficile infection, and to patients infected with hypervirulent C. difficile strains bearing the tcdC deletion at nucleotide 117 (p = 0.0003). Although there was not a prevalent yeast species in CDI patients, C. albicans was the species significantly (p < 0.001) associated to both the infections sustained by the non-hypervirulent C. difficile strains and those caused by the hypervirulent strain (p = 0.001). The biofilm production by the yeasts isolated from the CDI patients and from non-CDI diarrheic patients did not differ significantly. However, a significantly (p = 0.007) higher biofilm production was observed in the Candida strains, particularly C. albicans, isolated from healthy donors compared to that of the yeasts cultured from CDI patients. Seasonal occurrence was observed in the isolation rate of CDI and non-CDI diarrheic cases (p = 0.0019), peaking in winter for CDI patients and in spring for non-CDI diarrheic patients. Furthermore, seasonality emerged in the gut colonization by Candida of CDI patients in the winter. It seems, therefore, that the reduced capacity of biofilm production by Candida strains isolated from CDI patients might have a role in the development of C. difficile infection, probably facilitating the spread of the bacteria into the gut thus amplifying their pathogenic action.


Assuntos
Biofilmes , Candidíase , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Biodiversidade , Candida/genética , Candida albicans/genética , Candidíase/complicações , Candidíase/microbiologia , Clostridioides difficile/genética , Infecções por Clostridium/complicações , Infecções por Clostridium/microbiologia , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...